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We propose a model-independent scaling method to study the physical properties of high-temperature
superconductors in the normal state. We have analyzed the experimental data of the c-axis resistivity, the
in-plane resistivity, the Hall coefficient, the magnetic susceptibility, the spin-lattice relaxation rate, and the
thermoelectric power using this method. It is shown that all these physical quantities exhibit good scaling
behaviors, controlled purely by the pseudogap energy scale in the normal state. The doping dependence of the
pseudogap obtained from this scaling analysis agrees with the experimental results of angle-resolved photo-
emission and other measurements. It sheds light on the understanding of the basic electronic structure of high-
Tc oxides.
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I. INTRODUCTION

The mechanism of high-Tc superconductivity remains one
of the fundamental issues unsolved in condensed matter
physics. In particular, a unified theory toward the under-
standing of the rich phase diagram of high-Tc superconduct-
ors �HTSC� has not been established. At half-filling, the par-
ent compounds of HTSC are antiferromagnetic insulators.
Upon doping, the antiferromagnetic long-range correlation is
suppressed and the high-Tc superconductivity develops
above a critical doping level. At low doping but in the me-
tallic state, a pseudogap phase with missing entropy or spec-
tra is discovered.1–4 Around the optimal doping, a strange
metal phase with a linear in-plane resistivity and probably a
quantum critical point emerges.5 In the heavily overdoped
regime, the conventional Landau Fermi liquid behaviors are
gradually recovered. Throughout the whole doping range, the
electron states seem to be intrinsically inhomogeneous.6

A must step in the understanding of the phase diagram of
HTSC is to identify the energy scales and the control param-
eters or interactions of low-energy excitations of HTSC. In
the normal state at low doping, the pseudogap is believed to
be one of the characteristic parameters of low-lying excita-
tions. The corresponding temperature below which the
pseudogap effect is observed is commonly used as a bound-
ary to separate the pseudogap and the strange metal phases,
although there is no real phase transition between these
phases. However, due to the uncertainty in the definition of
the pseudogap, different experiments have adopted different
criteria to determine the pseudogap energy scale. This leads
to the claim of the existence of two pseudogaps, namely, the
upper and lower pseudogaps.7 In the strange metal phase, the
quantum critical fluctuation is strong and the temperature
itself may serve as a dynamic control parameter as suggested
by the marginal Fermi liquid theory.8

The scaling analysis of experimental data in HTSC is a
simple but powerful tool in elucidating the underlying phys-
ics without invoking a specific model. In the normal state, if
the pseudogap is a predominant energy scale controlling low-
energy excitations, then the low-temperature behavior of any

measurement physical quantity should satisfy a doping-
independent scaling law, although the analytic expression of
the scaling function is unknown. Based on this idea, we ana-
lyzed recently the temperature dependence of the c-axis re-
sistivity �c of HTSC and found that it obeys a universal
scaling law given by9

�c�T� =
�T

�
exp��

T
� , �1�

where � is a doping-dependent coefficient, T is temperature,
and � is the pseudogap. As shown in Ref. 9, Eq. �1� results
from the interplay between the anisotropic c-axis hopping
integral10,11 and the dx2−y2-like symmetry of the pseudogap. It
agrees excellently with the experimental data of multilayer
HTSC and resolved a long-standing puzzle regarding the
physical origin of the semiconductorlike temperature depen-
dence of �c in the pseudogap phase. Furthermore, it suggests
that there is only one energy scale controlling the low-energy
excitations around the antinodal points and the interlayer
hopping within each unit cell is coherent.

However, if the scaling function is unknown, the scaling
analysis becomes difficult. This has, in fact, hampered the
application of the scaling analysis. A commonly adopted ap-
proach in the scaling analysis in the literature is to assume
that by normalizing both the measurement quantity F�T� and
the temperature by the corresponding values at a sample-
dependent characteristic temperature T*, then all the experi-
mental data should fall onto a single curve described by the
scaling function

F�T�
F�T*�

= g� T

T*
� . �2�

However, in real materials, this scaling analysis often fails
since F�T� generally contains the terms which are not scaling
invariant. For example, the impurity contribution to the in-
plane resistivity or other physical quantities is not scaling
variant. Moreover, since T* is unknown prior to the analysis,
this formula is difficult to be implemented practically even if
it is correct. Empirically, T* is often determined from some
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special features appearing in the measurement data. For ex-
ample, for the in-plane resistivity, T* is determined from the
temperature below which the resistivity begins to deviate
from its high-temperature linear-T behavior. However, to de-
termine unambiguously the linear-T region is not always
possible since in some low doping samples, the measured
temperature may not be high enough to reach the linear-T
regime. Furthermore, the deviation from linear to nonlinear T
is a crossover, not a phase transition, and a small measure-
ment error may result in a large error in T*.

In this paper, we propose a scaling method and apply it to
analyze the normal-state properties of HTSC. This method
extends our previous scaling analysis of the c-axis resistivity
to other physical quantities. It breaks the barrier in the use of
the simple formula �2� and allows a model-independent scal-
ing analysis to be done reliably. We have reanalyzed the
experimental data of the c-axis resistivity of HTSC with this
method. By comparison with our previous results,9 we find
that this method, indeed, works very well. It provides a
simple but powerful approach for analyzing experimental re-
sults. Furthermore, this method is model independent. It can
be applied not only to the high-Tc cuprates, but also to any
other materials where the single parameter scaling behavior
is valid.

This paper is arranged as follows. Section II gives an
introduction to the scaling method based on a least square fit
of an unknown scaling function to the experimental data. In
Sec. III, we apply the method to analyze the scaling behav-
iors of a number of physical quantities of HTSC in the nor-
mal state, using the experimental data published in the litera-
ture. In Sec. IV, we analyze the universal behavior of the
energy scales obtained in Sec. III and discuss its physical
implications. Section V gives a brief summary.

II. METHOD OF SCALING ANALYSIS

In this section, we present a generic method for analyzing
the scaling behavior of a set of experimental data �Fi�T� , i
=1, . . . ,N�. Here, T can be temperature, pressure, external
field, or any other controllable variable used in experiments.
The subscript i is a sample index to which the physical quan-
tity F as a function of T is measured experimentally. N is the
total number of samples. In the discussion below, in order to
be directly relevant to the scaling analysis presented in Sec.
III, we assume that T is the temperature and a sample repre-
sents a specified high-Tc compound.

We start by assuming that in a relevant temperature range
the low-lying physics is governed only by one energy scale
�. Thus, the measured physical quantity F�T� satisfies a
simple scaling law

F�T� = �F� T

�
� + � , �3�

where �, �, and � are all doping dependent, but temperature
independent. For the physical quantities to be discussed in
Sec. III, � is generally the contribution of impurities or other
extrinsic interactions. � is a characteristic energy scale of the
system. It controls the dynamics of the system. F�T� is a

universal �doping-independent� scaling function. Its tempera-
ture dependence is determined by the low-lying excitations
and interactions.

The scaling function F�T� is generally unknown. This is
the difficulty commonly met in the data analysis. However,
the scaling method introduced here does not depend on the
detailed formula of F�T�, provided that the single-parameter
scaling hypothesis Eq. �3� is valid. This is a merit of the
method. It provides a simple but powerful approach to probe
the intrinsic connection between different samples and to de-
termine the doping dependence of the characteristic energy
scale � without invoking a specific model.

The aim of the scaling analysis is to determine from the
measurement data the scaling parameters ��i ,�i ,�i� and the
optimized scaling functions F�x� so that all the data can be
rescaled onto a universal curve. This can, in principle, be
achieved by minimizing the total deviation of the scaling
function between any two samples:

�F = �
i�j

N

�
k

Nk

�Fi�Tk�� − F j�Tk��	
2, �4�

where

Fi�T� =
1

�i
�Fi��iT� − �i	 . �5�

Fi��iT� is the value of F of the ith sample at temperature
�iT. Nk is the number of sampled temperature points used in
optimizing the scaling function. Nk can be adjusted in the
minimization. Initially, Nk can take roughly the value of av-
erage measured temperature points.

However, due to the scaling behavior of F�T�, not all the
parameters ��i ,�i ,�i� can be uniquely determined by the
minimization of �F if F is unknown. Indeed, from Eqs. �4�
and �5�, it can be shown that if ��i ,�i ,�i� �i=1, . . . ,N� is a
set of parameters minimizing �F, then ��i /�s ,�i /�s ,�i

−�s�i /�s� with arbitrary but nonsingular ��s ,�s ,�s� will
also minimize �F. ��s ,�s ,�s� are unknown and can be taken
as the scaling parameters of a reference sample. This means
that only the relative values of �i, �i, and �i with respect to
a reference sample

Ai =
�i

�s
, �6�

Bi =
�i

�s
, �7�

Ci = �i − Ai�s, �8�

can be fixed. From the definitions �6�–�8�, it is straightfor-
ward to show that As=Bs=1 and Cs=0.

Using the relative scaling parameters �Ai ,Bi ,Ci�, one can
define a new scaling function

f�T

B
� = �sF� T

B�s
� + �s. �9�

F�T� can then be expressed as
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F�T� = Af�T

B
� + C . �10�

For the reference sample, the scaling function is the measure-
ment curve itself: F�T�= f�T�.

Equation �10� is nothing but to scale all experimental data
onto the measurement curve of the reference sample. This
suggests that the reference sample should be chosen such
that its temperature interval is broad enough to cover the
whole temperature range physically interesting and the data
quality is among one of the best.

The relative scaling parameters �Ai ,Bi ,Ci� can now be
determined by minimizing the total deviation of the scaling
functions:

�f = �
i�j

N

�
k

Nk

�f i�Tk� − f j�Tk�	2, �11�

where

f i�T� =
1

Ai
�Fi�BiT� − Ci	 . �12�

In general, BiT may not be exactly the temperature point
experimentally measured. The value of Fi�BiT� can be ob-
tained from the measurement data by interpolation, provided
that BiT is within the measured temperature interval. For
each pair of f i and f j, if BiTk or BjTk is outside the measured
temperature interval for the ith or jth sample, then the cor-
responding term in Eq. �4� should be excluded from the sum-
mation. The minimization of �f can be done, for example,
using the standard subroutine given in Ref. 12.

Below we take the in-plane resistivity data of
YBa2Cu3O6+� published by Ito et al.13 as an example to
show how the method works. For simplicity, here we only
use the experimental data for three of the samples, �
= �0.68,0.78,0.85�. Figure 1�a� shows the measurement data
of �ab�T� for these three samples. In the scaling analysis, we
take �=0.68 as the reference sample and Nk to be roughly
equal to the measured temperature points of the reference
sample. The relative scaling parameters can then be deter-
mined by numerically minimizing Eq. �11�. The resulting
scaling curves are shown in Fig. 1�b� and the scaling param-
eters are given in Table I.

In Eq. �10�, if C�F�T�, then the scaling equation is ap-
proximately given by

F�T� 
 Af�T

B
� . �13�

In this case, the scaling equation can be reexpressed as

F�T�
F�T��

=
f�T/B�
f�T*/B�

� g� T

T*
� , �14�

where T� is a sample-dependent characteristic temperature.
g�T� is a rescaled function of f�T�. Equation �14� is precisely
the scaling equation defined by Eq. �2�. It is a commonly
used scaling equation in the scaling analysis of experimental
data. However, it should be pointed out that this equation is

valid only when the temperature independent term C can be
safely ignored or reliably subtracted from F�T� in Eq. �10�.

III. SCALING ANALYSIS OF EXPERIMENTAL DATA

In this section, we apply the scaling method to analyze the
experimental data of high-Tc cuprates in the normal state. We
will first analyze the scaling behavior of the c-axis resistivity
�c. Since an approximate but accurate expression for the
scaling function of �c is available, this allows us to determine
the absolute values of the scaling parameters. For other mea-
surement quantities, including the in-plane resistivity �ab�T�,

FIG. 1. �Color online� �a� The experimental data of the in-plane
resistivity �ab�T� of YBa2Cu3O6+�, extracted from Fig. 2�a� of Ref.
13. �b� The scaling plot of the experimental data. The reference
sample is �=0.68.

TABLE I. The scaling parameters for the in-plane resistivity �ab

of YBa2Cu3O6+� published by Ito et al. �Ref. 13�. The parameters
of the reference sample, �=0.68, are in bold face.

Sample ��� A B
C
�10−4 � cm�

0.68 1.0 1.0 0.0

0.78 0.63 0.81 0.0074

0.85 0.39 0.60 −0.10
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the Hall coefficient RH�T�, the magnetic susceptibility 	�T�,
the spin-lattice relaxation rate 1 /T1T, and the thermoelectric
power S�T�, only the relative scaling parameters can be de-
termined.

Our scaling analysis is based on the experimental data
already published in the literature. We collect as much as we
can the experimental data of HTSC from which a systemati-
cal analysis of the scaling behaviors can be done. The pref-
erence is given to the latest published data if there are con-
siderable differences between the data published by different
groups. The chemical formula of the compounds with their
abbreviations analyzed in this paper are given in Table II.
The scaling analysis here will be limited to the superconduct-
ing samples in the normal state. The data for the nonsuper-
conducting samples will not be analyzed. In all figures and
tables presented in this paper, the parameters for the refer-
ence samples will be in bold face to distinguish them from
other parameters.

In the comparison of the scaling parameters for different
families of HTSC, we will use the superconducting transition
temperature Tc and its empirical formula proposed by
Presland et al.,14

Tc

Tc,max
= 1 − 82.6�p − 0.16�2, �15�

to determine the effective carrier concentration p. Here,
Tc,max is the maximal superconducting transition temperature.
For La2−xSrxCuO4, the carrier concentration is equal to the
doping concentration of Sr ions, p=x.

A. c-axis resistivity �c„T…

In the pseudogap phase of high-Tc cuprates, the c-axis
resistivity �c behaves very differently from its in-plane coun-
terpart �ab. Along the CuO2 plane, �ab shows a metal-like
temperature dependence. It decreases with decreasing tem-
perature. However, along the c axis, �c behaves as a semi-
conductor. It increases with decreasing temperature.

This dramatic difference between �c and �ab is not what
one might expect within conventional Fermi liquid theory. To
resolve this issue, a number of theoretical models based on
the dynamic confinement of charge-spin separated
particles15–17 or the incoherent interlayer hopping18,19 were
proposed. Most of the theories predicted that �c should di-

verge in a certain power law of T at low temperature. How-
ever, it seems that none of these theories can account quan-
titatively or even qualitatively the experimental data.

The semiconductorlike behavior of �c results, as we re-
cently pointed out,9 from the interplay between the
dx2−y2-like pseudogap and the anisotropic c-axis hopping
integral.10,11 �c contributes mainly from the quasiparticles
around the antinodal points. The nodal contribution is com-
pletely suppressed by the interlayer hopping matrix ele-
ments. Since the pseudogap is a prevailing energy scale gov-
erning the c-axis dynamics in the pseudogap phase, it is
natural to assume that the c-axis resistivity satisfies a scaling
law governed purely by the pseudogap �.

In cuprate superconductors, if Cu atoms in the two neigh-
boring CuO2 planes lie collinearly along the c-axis, then the
interlayer hopping integral between these two planes is given
by

tc � �cos kx − cos ky�2, �16�

where �kx ,ky� are the in-plane momenta of electrons. tc van-
ishes along the nodal direction. Based on this formula, we
showed in Ref. 9 that for multilayer cuprates, �c is approxi-
mately given by

�c�T� = �Fc� T

�
� , �17�

where

Fc�x� = x exp�1

x
� . �18�

Equation �17� is a special case of Eq. �3�. It holds when the
residual resistivity contributed by disorder scattering � is
vanishingly small compared with the contribution of
pseudogap to �c.

The scaling function �18�, as shown in Fig. 2, agrees ex-
cellently with the measurement data for Y123 published by

TABLE II. HTSC compounds and their abbreviations analyzed
in this paper.

YBa2Cu3O6+� Y123

Y0.8Ca0.2Ba2Cu3O6+� Ca-Y123

YBa2Cu4O8 Y124

Bi2Sr2CaCu2O8+� Bi2212

Bi2Sr2Ca2Cu3O10+� Bi2223

La2−xSr2−xCuO4 La214

Bi2Sr2−xLaxCuO6+� La-Bi2201

HgBa2CuO4 Hg1201

TlSr2CaCu2O7−� Tl1212

FIG. 2. �Color online� The scaling function Fc of the c-axis
resistivity �c�T� for Y123, Bi2212, and Bi2223, compared with the
theoretical curve determined by Eq. �18� �dashed line�. The experi-
mental data are obtained from Refs. 22–24 for Bi2212, from Ref. 25
for Bi2223, and from Refs. 20 and 21 for Y123. Bi2223 samples are
labeled with the notations defined in Ref. 25.
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Yan et al.20 and Babić et al.,21 for Bi2212 by Watanabe et
al.,22–24 and for Bi2223 by Fujii et al.25

The values of the scaling parameters � and � are given in
Ref. 9. The pseudogap �, as shown in Fig. 3, drops almost
linearly with doping. This doping dependence of the
pseudogap agrees with the angle-resolved photoemission9

�ARPES� as well as other measurement data.27,28 The values
of � �not shown here� for two overdoped samples of Bi2212
from Chen et al.29 deviate obviously from the other points.
However, their �c data can be well scaled onto the universal
curve, as shown in Fig. 3�a� of Ref. 9. A probable explana-
tion is that the true doping levels for these two samples may
not be as high as reported. The four samples, F, G, H, and I,
of Bi2223 near optimal doping �here, we adopt the notations
used in Ref. 23� have almost the same Tc. However, their �
obtained from �c are very different. This might be due to the
inhomogeneity of charge carriers in these samples, since Tc
is determined mainly by the fraction of a sample where the
carrier concentration is close to the optimal doping, while �c
is the contribution of the whole sample.

The existence of the universal scaling law of �c, espe-
cially its activated behavior, implies that the c-axis hopping
is predominantly coherent, rather than incoherent as usually
believed. The reason is actually simple. If the interlayer hop-
ping is incoherent, then the excitations around the gap nodes
may have substantial contribution to �c, which may break
this scaling law. For multiple layer cuprates, the intralayer
coupling may be different from the interlayer coupling.
However, the different coupling between CuO2 planes does
not change the fact that the pseudogap is the only energy
scale governing the quasiparticle excitations around the an-
tinodes in the normal state. Therefore, Eq. �17� holds irre-
spective of the number of CuO2 planes in each unit cell.

The above scaling analysis is done based on Eq. �18� by
assuming that the interlayer hopping integral is given by Eq.
�16�. However, in single-layer cuprate compounds, Cu atoms
of two adjacent CuO2 planes do not lie collinearly along the
c axis. In this case, the c-axis hopping integral becomes11

tc � �cos kx − cos ky�2 cos
kx

2
cos

ky

2
. �19�

It vanishes along both the nodal and antinodal directions.
The c-axis hopping, thus, contributes mainly from the low-
lying excitations between the nodal and antinodal points. As
the pseudogap is the dominant energy scale in the pseudogap
phase, the scaling law of the c-axis resistivity �Eq. �17�	
should still hold. However, the scaling function of the single-
layer cuprates is expected to be different. In this case, an
accurate expression for the scaling function is not available.
Thus, we are unable to determine the absolute values of the
scaling parameters � and � from the scaling analysis. How-
ever, the relative scaling parameters can be determined using
the scaling method introduced in the previous section.

We have analyzed the scaling behavior of �c for La-
Bi2201 �Ref. 30� using the formula

�c = Acfc� T

Bc
� . �20�

Again, the contribution from impurity scattering to �c is ig-
nored since it is much smaller than the contribution from the
pseudogap effect.

Figure 4 shows the scaling function fc for La-Bi2201. The
scaling parameters are given in Table III. The analysis shows
that �c, indeed, exhibits a good scaling behavior in this one-
layer material. However, the scaling function is different
from that for the multilayer materials at low temperatures. It
is also different from the logarithmic divergence behavior as
observed by Ando et al. in La214 cuprates.31

The scaling behavior of �c for both the single- and
multiple-layer cuprates indicates that the interlayer dynamics
is, indeed, governed by the interplay between the anisotropic
interlayer hopping integral and the pseudogap effect in all
high-Tc cuprates.

FIG. 3. �Color online� The doping dependence of the pseudogap
� obtained from the scaling analysis of the experimental data
shown in Fig. 2 with Eqs. �17� and �18�. �a	, �b	, and �c	 refer to
Refs. 22–24 and 26, respectively.

FIG. 4. �Color online� Scaling behavior of the c-axis resistivity
�c�T� for the single-layer cuprate superconductor La-Bi2201. The
experimental data were taken from Ref. 30. The dashed line denotes
the scaling function defined by Eq. �18�.
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B. In-plane resistivity �ab„T…

In contrast to the semiconductorlike behavior of �c, the
in-plane resistivity �ab of high-TC cuprate superconductors is
metal-like in the normal state. In the underdoped and opti-
mally doped materials, �ab exhibits a universal linear behav-
ior at high temperatures.33 The phonon scattering can lead to
a linear resistivity. However, the Debye temperature deter-
mined by applying the Bloch-Gruneisen formula is too low
too account for the experimental data of Bi2201.34 The linear
behavior of �ab could be a manifestation of strong correla-
tions. It is a characteristic behavior of marginal Fermi
liquid,8 where the inelastic scattering rate scales linearly with
temperature. It may also result from gauge35–37 or quantum
critical fluctuations.

Below a characteristic temperature T*, �ab begins to de-
viate from the linear behavior. This deviation is correlated
with the pseudogap effect, and T* is believed to be the onset
temperature below which the pseudogap opens. However, the
opening of the pseudogap does not lead to a phase transition.

There are no thermal anomalies observed in the specific heat
or other thermodynamic quantities around T*.

To analyze the scaling behavior of the in-plane resistivity,
we assume �ab to satisfy the following scaling law:

�ab�T� = Aabfab� T

Bab
� + Cab. �21�

Here, the residual resistivity Cab should be retained since the
impurity contribution to �ab is no longer negligible compared
with the inelastic contribution of electrons to �ab.

We have applied Eq. �21� to the experimental data pub-
lished by Ito et al.13 for Y123, by Watanabe et al.22 for
Bi2212, by Fujii et al.25 for Bi2223, and by Nakano et al.38

for La214. Figure 5 shows the scaling function for these
compounds. The corresponding scaling parameters are
shown in Table IV. The measurement data �not shown in the
figure� begin to deviate from the universal scaling curves
near Tc due to superconducting fluctuations.

The result of Fig. 5 shows that �ab, indeed, satisfies the
simple scaling law described by Eq. �21�. Moreover, all the
curves shown in Fig. 5 are obtained by taking Y123 �
=0.68 as a reference. This means that �ab can be scaled onto
a single curve for all these materials. Thus, the scaling func-
tion of �ab is universal. It does not depend on the chemical
structure nor on the doping level. This suggests that the in-
plane resistivity is governed by the same scattering mecha-
nism in all cuprate superconductors.

The striking scaling behavior of �ab indicates that the
characteristic temperature T* above which �ab varies linearly
with temperature is proportional to the scaling parameter Bab.
In Ref. 9, we showed that T* is proportional to the
pseudogap � determined from the c-axis resistivity within

TABLE III. The scaling parameters, Ac and Bc, of the c-axis
resistivity �c defined by Eq. �20� for La-Bi2201. The experimental
data and the carrier concentration p are taken from Ref. 30.

Sample
�x�

Tc

�K�
Doping

�p� Ac Bc

0.84 1.4 0.10 2.50 1.13

0.73 14 0.11 1.37 1.14

0.66 23 0.12 1.0 1.0

0.49 31 0.14 0.79 0.51

0.39 38 0.16 0.67 0.41

FIG. 5. �Color online� The scaling function of
the in-plane resistivity for Y123 �Ref. 13�, Y123
�Ref. 32�, Bi2212 �Ref. 20�, Bi2223 �Ref. 23�,
and La214 �Ref. 33�. The Bi2223 samples are
labeled using the notations given in Ref. 25.
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measurement errors, independent of doping. Thus, Bab is also
proportional to �. This means that, same as for the c-axis
resistivity, the pseudogap � is also a control energy scale for
the in-plane resistivity, although �ab is mainly the contribu-
tion of nodal quasiparticle excitations.

Wuyts et al.39,40 did a similar scaling analysis for the in-
plane resistivity of Y123. However, the characteristic tem-
peratures �or energy scales� they determined are not very
accurate. Their scaling curves of �ab �Fig. 1 of Ref. 39 and
Fig. 7 of Ref. 40� do not look as good as those shown in Fig.
5.

In Fig. 5�d�, we only show the experimental data for
slightly underdoped La214 samples �x=0.1, 0.125, and 0.14�.
For heavily underdoped samples �x=0.04, 0.06, and 0.08�,

we find that the data deviate significantly from the universal
scaling curve below T*. This deviation was observed only in
the La214 samples. It may be due to the suppression of the
scattering rate by the formation of stripe or other competing
orders in these compounds.41

In the overdoped regime, �ab is not linear-T dependent in
nearly the whole temperature range.42 The experimental data
do not fall onto the scale curves as shown in Fig. 5. This
change of the temperature behavior of �ab in the overdoped
regime can be understood from the change of the Fermi sur-
face topology revealed by ARPES.43 In the overdoped re-
gion, the Fermi surface becomes electronlike. This may af-
fect strongly the dynamic behavior of electrons in the CuO2
planes.

TABLE IV. The scaling parameters, Aab, Bab, and Cab, for the in-plane resistivity of Y123a �Ref. 13�,
Y123b �Ref. 32�, Bi2212 �Ref. 22�, Bi2223 �Ref. 25�, and La214 �Ref. 28� as shown in Fig. 5. The notations
used in Ref. 25 are adopted to label the samples of Bi2223. Y123a with �=0.68 is taken as the reference
sample. The unit of Cab is 10−4 � cm. The doping p of Y123,a Bi2212, and Bi2223 are obtained from the
empirical formula Eq. �15�, with the maximum Tc being 93.54 K for �=0.90 of Y123,a 89.0 K for Bi2212, at
�=0.22, and 108.0 K for F sample of Bi2223. The values of Tc for La214, Y123a, Bi2212, and Bi2223 are
obtained from Refs. 4, 13, 22, and 25, respectively.

Sample
Tc

�K�
Doping

�p� Aab Bab Cab

Y123a 0.45 54.96 0.088 3.83 1.91 0.09

0.58 64.67 0.098 1.48 1.22 0.13

0.68 67.04 0.100 1.0 1.0 0.0

0.78 80.26 0.118 0.63 0.81 0.0074

0.85 92.08 0.146 0.39 0.60 −0.10

0.90 93.54 0.16 0.22 0.50 −0.19

Y123b 0.55 2.02 1.33 0.19

0.60 1.57 1.20 −0.31

0.65 1.35 1.15 −0.22

0.70 0.89 0.92 −0.095

0.75 0.70 0.81 −0.070

0.80 0.55 0.65 −0.26

0.85 0.52 0.78 0.049

Bi2212 0.2135 71.0 0.11 1.18 0.96 1.70

0.217 77.0 0.119 1.07 0.89 1.10

0.22 83.0 0.131 0.65 0.73 1.12

0.24 89.0 0.16 0.51 0.63 0.60

0.245 87.86 0.173 0.48 0.82 0.76

0.255 87.4 0.175 0.32 0.54 0.24

Bi2223 B 93.0 0.118 0.12 1.09 0.31

D 104.0 0.139 0.10 0.99 −0.20

E 106.0 0.145 0.087 0.81 −0.69

F 108.0 0.16 0.07 0.69 −0.90

La214 0.10 30.75 0.10 0.84 2.06 9.47

0.125 32.0 0.125 0.60 1.97 6.93

0.14 36.62 0.14 0.51 2.05 5.77

aReference 13.
bReference 32.
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C. Hall coefficient RH„T…

The Hall coefficient RH�T� is an important quantity in
characterizing the nature of charge carriers. In a conventional
metal with spheric Fermi surface and isotropic scattering
rate, the Hall coefficient is inversely proportional to the car-
rier concentration, independent of temperature. The sign of
RH reflects the type of conducting charge carriers. RH is
negative or positive if the charge carriers are electrons or
holes. However, in doped transition metal oxides, such as
high-Tc cuprates, the Hall coefficient is strongly temperature
dependent.44–46 It is determined not just by the carrier con-
centration, but also by the scattering rates and the curvature
of the Fermi surface. Other effects, such as magnetic skew
scattering, can also affect the temperature dependence of
RH.47

In HTSC, RH shows a strong temperature and doping de-
pendence. At high temperature, RH increases rapidly with
decreasing temperature. After reaching a maximum, RH
drops down to low temperature in most of the samples. This
is the typical temperature dependence of RH in HTSC. It was
observed in Y123,44,48 La214,49–51 Bi systems,52–54

Hg1212,55 and Tl systems.56–58

The complex temperature dependence of the Hall coeffi-
cient remains one of the hardest problems to be resolved.
Within the theory of charge-spin separation, Anderson59 pro-
posed to use the Hall angle 
H instead of the Hall coefficient
RH to understand the Hall anomaly. He argued that due to the
charge-spin separation, the Hall angle, which is defined by
the ratio between the transverse and longitudinal conductivi-
ties, 
H=tan−1 �xy /�xx, should be determined purely by the
transverse relaxation rate �i.e., the relaxation rate perpendicu-
lar to the Fermi surface�. This eliminates the ambiguity in the
explanation of the Hall coefficient, since it is determined by
both the longitudinal and transverse relaxation rates. Ander-
son further argued that as the transverse relaxation rate is
determined by the spin excitations, which is relatively nor-
mal, the Hall angle should follow the temperature depen-
dence of normal Fermi liquid, i.e.,

cot 
H = �T2 + � , �22�

where � is a temperature independent coefficient and � is the
impurity contribution.60 This quadratic temperature depen-
dence of the Hall angle, indeed, agrees with the experimental
observation at optimal doping. However, in both underdoped
and overdoped regimes,48,50–53 the temperature exponent de-
viates generally from 2, and the above expression breaks
down.

To reveal the physics behind the anomalous temperature
dependence of the Hall effect without invoking a specific
model, we have analyzed the scaling behavior of RH. We
assume the scaling function of RH to have the form defined
as in Eq. �10�:

RH�T� = AHfH� T

BH
� + CH. �23�

By fitting the experimental data with this formula using the
method introduced in Sec. II, the scaling parameters

�AH ,BH ,CH� and the scaling function fH can then be deter-
mined.

Figure 6 shows the scaling function fH for Y123, La214,
and La-Bi2201. The corresponding scaling parameters are
given in Table V. The experimental data were extracted from
Ref. 48 for Y123, from Ref. 49 for La214, and from Ref. 52
for La-Bi2201. The experimental data of Y123 with �
�0.55 are not included since the temperature range mea-
sured is too narrow to allow a reliable scaling analysis to be
done.

For La214, we find that RH exhibits a good scaling behav-
ior in nearly the whole temperature range, as shown in Fig.
6�a�. This is also true for La-Bi2201 �Fig. 6�b�	. It suggests
that the dynamical behavior of RH is still governed by a
single energy scale. However, in contrast to the in-plane re-
sistivity, the scaling curve of La214 cannot be perfectly

FIG. 6. �Color online� The scaling functions of the Hall coeffi-
cient RH�T� for �a� La214 �Ref. 49�, �b� La-Bi2201 �Ref. 52�, and
�c� Y123 �Ref. 48�. The dashed line in �a� is obtained from the
scaling curves determined by Hwang et al. �Ref. 50�.
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scaled onto the scaling curve of La-Bi2201, except in an
intermediate temperature regime. For Y123, the experimental
data can also be scaled onto a single curve in the high-
temperature regime, above the peak temperature of RH. How-
ever, at low temperatures, fH shows very different tempera-
ture dependence for different dopings. This difference might
be caused by the contribution of CuO chains in Y123. Elec-
trons in CuO chains are more disordered in the underdoped
samples than in the optimally doped one.

A similar scaling analysis has been done by Hwang et
al.50 and by Chen et al.61 The scaling equation they used is
essentially the same as Eq. �23�, but with different notations.
In their notation, the scaling equation is given by

RH�T� = RH
 + R

H
* f� T

T*
� . �24�

RH
 is the high-temperature value of RH, which is approxi-

mately temperature independent at high temperatures. T* is a
characteristic temperature to be determined. Empirically,
they assumed T* to be the crossover temperature from a
temperature dependent to a temperature independent RH at
high temperature. However, the crossover temperature �if ex-
ists� is very high, well above the temperature range they
measured, in the underdoped samples. They cannot deter-
mine reliably the crossover temperature, even by extrapola-
tion. Thus, their scaling analysis cannot be applied to the

underdoped samples. This is not a problem in our approach.
In Fig. 6�a�, we compared the scaling curve obtained by
Hwang et al.50 with ours. We find that these two scaling
curves agree well with each other for La214 above the peak
temperature of RH. This suggests that the crossover tempera-
ture they determined is proportional to the parameter BH as
we determined here.

Recently, Gor’kov and Teitel’baum62 and Ono et al.49

analyzed the high-temperature behavior of RH using a two-
band model in La214. They assumed the high-temperature
data of RH to be thermally activated, resulting from strong
charge fluctuations between the effective lower and upper
Hubbard bands. They found that the high-temperature data of
RH can, indeed, be explained by this simple picture. Their
results suggest that the thermal excitation gap between the
lower and upper Hubbard bands is significantly smaller than
the �direct� optical charge transfer gap.

D. Thermoelectric power S„T…

The thermoelectric power or the Seebeck coefficient S�T�
is one of the transport quantities complementary to the resis-
tivity and Hall effect. It reveals the properties of quasiparti-
cle excitations both near and away from the Fermi level. It
can be used to judge whether the charge carriers are electrons
or holes from the sign of S�T�. It can also be used to quantify
the charge carrier concentration. In HTSC, empirically, the

TABLE V. The scaling parameters for the Hall coefficient RH shown in Fig. 6. The unit of CH is
10−3 cm3 C−1. Tc for La214 are obtained by interpolating the data given in Ref. 4. The hole concentration p
for La-Bi2201 and Y123 are obtained from Eq. �15� with the maximum Tc,max=33.03 K for x=0.44 of
La-Bi2201, and 93 K for �=0.95 of Y123.

Sample
Tc

�K�
Doping

�p� AH BH CH

La214 0.21 30.99 0.21 0.10 0.52 0.34

0.18 37.14 0.18 0.25 1.08 0.23

0.15 37.93 0.15 0.54 1.40 0.035

0.12 31.88 0.12 0.96 1.62 −0.42

0.08 22.3 0.08 2.23 2.15 −2.04

0.05 2.66 0.05 4.34 2.68 −5.62

La-Bi2201 0.24 24.06 0.218 0.14 0.91 0.91

0.3 30.0 0.194 0.22 0.87 1.11

0.44 33.03 0.16 0.35 1.12 1.00

0.57 28.44 0.118 0.49 1.23 1.08

0.66 19.95 0.09 0.61 1.27 1.70

Y123 0.55 55.0 0.088 1.76 1.27 0.56

0.6 57.0 0.091 1.52 1.15 0.20

0.65 58 0.092 1.46 1.09 −0.035

0.7 60.0 0.094 1.0 1.0 0.0

0.75 62.0 0.096 0.86 1.05 −0.20

0.8 69.0 0.103 0.67 1.08 −0.11

0.85 83.0 0.123 0.70 0.96 −0.17

0.95 93.0 0.16 0.35 0.78 0.073

7.0 91.0 0.176 0.28 0.67 0.031
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value of S�T� at T=290 K was found to be a good measure
of the hole concentration.63

In high-Tc oxides, the thermopower S�T� is small in the
superconducting state due to the suppression of the pairing
gap to the quasiparticle excitations.63 In the normal state,
S�T� increases with temperature. It exhibits a maximum and
then drops monotonically at high temperatures. At a given
temperature, S�T� decreases with increasing doping. For
most of the high-Tc compounds, including Bi2212,63–66

La-Bi2201,67,68 Tl1212,63,64 and Hg1201,69–71 S�T� is posi-
tive in the underdoped regime, but becomes negative in the
overdoped regime. At optimal doping, S�T� becomes nega-
tive at high temperature. However, in La214, S�T� was found
to be positive in the whole doping range.72–74 The ther-
mopower of overdoped Y-based cuprates also behaves differ-
ently from other compounds. It shows a positive slope, in
contrast to the negative slope in other compounds, at high
temperature. This is probably due to the contribution of CuO
chains.

We have applied our scaling approach to the thermoelec-
tric power. The scaling formula is given by

S�T� = ASfS� T

BS
� + CS. �25�

Figure 7 shows the scaling curves for Y123, Ca-Y123,
Hg1201, and La214. The scaling parameters are listed in
Tables VI and VII. The experimental data were extracted
from Ref. 72 for Y123, from Ref. 75 for Ca-Y123, from Ref.
69 for Hg1201, and from Refs. 72 and 73 for La214. The
scaling curves for two heavily underdoped samples with Tc

�2 K and three heavily overdoped samples of Hg1201 �Ref.
69� deviate significantly from the universal scaling curve and
are not included in the figure. For Y123 and Ca-Y123, we
only analyze the underdoped samples since in the overdoped
regime the chain contribution becomes important, which
breaks the scaling law. The chain contribution can, in fact, be
seen already in the slightly underdoped sample of Y123 ��
=0.175�, whose high-temperature data of S�T� already begin
to deviate away from the scaling curve at high temperatures.
For some samples of Hg1201 and Ca-Y123, the measure-
ment data fall faster than the universal scaling curves at low
temperatures. This can be attributed to the superconducting
fluctuations.

The scaling behavior of S�T� in HTSC has been exten-
sively studied by a number of groups using the scaling for-
mula like that defined in Eq. �14�.64,66,69,71,72 Our scaling
curves are consistent with their results. However, our data
are much less scattered than theirs.

TABLE VI. The scaling parameters for the thermoelectric power S�T� of Y123, Ca-Y123, and Hg1201 in
Fig. 7. The unit of CS is �V /K. Sample 8 of Hg1201 is taken as a reference.

Sample
Tc

�K�
Doping

�p� AS BS CS

Y123 0.65 75.53 1.80 4.17

0.60 13.31 0.057 60.37 1.60 3.22

0.53 44.66 0.079 42.42 1.27 2.46

0.44 55.51 0.089 15.67 0.99 2.36

0.35 59.8 0.093 10.36 0.94 2.03

0.24 74.4 0.109 1.18 0.83 1.46

0.175 90.7 0.14 −1.46 0.79 0.48

Ca-Y123 0.38 85.50 0.16 0.31 0.61 −1.17

0.43 85.00 0.151 0.41 0.80 −1.07

0.51 81.58 0.136 0.99 0.81 −1.57

0.54 78.55 0.128 1.10 0.84 1.13

0.57 77.19 0.125 1.15 0.85 4.21

0.69 47.04 0.085 1.46 1.05 12.86

0.99 37.69 0.077 2.01 1.40 30.07

Hg1201 3 26.0 0.05 3.65 1.58 33.56

4 46.0 0.057 3.81 1.43 11.79

5 62.0 0.069 2.50 1.33 15.24

6 72.0 0.09 1.98 1.26 4.88

7 77.0 0.103 1.90 1.12 −3.27

8 83.0 0.11 1.0 1.0 0.0

9 91.0 0.119 1.18 1.07 −4.67

10 95.0 0.127 0.96 1.01 −2.80

11 98.0 0.157 0.68 0.98 −3.01
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FIG. 7. �Color online� The scaling function of
the thermoelectric power S�T� for Y123 �Ref. 72�,
Ca-Y123 �Ref. 75�, Hg1201 �Ref. 69�, La214
�Ref. 73� and La214 �Ref. 72�. The notations de-
fined in Ref. 69 are used to label the Hg1201
samples. Sample 8 of Hg1201 is the reference.

TABLE VII. The scaling parameters for the thermoelectric power S�T� of La214 in Fig. 7. The data are
referenced to sample 8 of Hg1201 shown in Table VI. The unit of CS is �V /K.

Sample
Tc

�K�
Doping

�p� AS BS CS

La214a 0.15 37.93 0.15 1.23 0.87 16.44

0.18 37.14 0.18 0.90 0.69 8.07

0.2 34.62 0.2 0.74 0.63 5.70

0.21 30.99 0.21 0.64 0.60 4.46

0.23 23.77 0.23 0.52 0.61 1.95

0.25 17.29 0.25 0.45 0.65 0.15

0.26 14.4 0.26 0.42 0.72 −1.48

0.28 8.08 0.28 0.44 0.67 −0.85

La214b 0.06 5.0 0.06 53.51 2.01 4.18

0.08 22.3 0.08 51.78 1.74 3.22

0.1 30.75 0.1 40.03 1.54 2.53

0.125 32.0 0.125 31.55 1.17 1.66

0.135 35.9 0.135 30.04 1.01 0.88

0.15 37.93 0.15 18.66 0.78 0.79

0.17 38.4 0.17 17.73 0.69 0.87

0.2 34.62 0.2 10.59 0.62 0.83

0.22 27.81 0.22 6.34 0.54 0.61

0.24 19.96 0.24 3.41 0.54 0.53

0.27 12.0 0.27 2.69 0.53 0.43

aTc is obtained from the data published in Ref. 4 by interpolation.
bTc is obtained from Fig. 1 of Ref. 72.
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E. Uniform magnetic susceptibility �„T…

The uniform magnetic susceptibility 	�T� measures basi-
cally the density of states at the Fermi level in conventional
Landau Fermi liquid. However, in high-Tc copper oxides, the
susceptibility is strongly affected by antiferromgantic spin
fluctuations. The parent compounds of HTSC are half-filled
antiferromagnetic Mott insulators with long-range Néel
order.76 Upon doping, the Néel order is rapidly suppressed,
but antiferromagnetic fluctuations persist up to slightly
overdoping.77,78

At half-filling, 	�T� shows a sharp peak around the Néel
temperature.79,80 This peak shifts down to lower temperature
with doping and disappears completely when the supercon-
ductivity emerges. In the normal state, the magnetic suscep-
tibility 	�T� first increases with increasing temperature, de-
velops a broad peak, and then drops down at high
temperature.23,38,81–85

In real materials, the magnetic susceptibility is strongly
affected by magnetic impurities. These impurities contribute
a Curie term to 	, which diverges as 1 /T at low tempera-
tures. The impurity contribution is strongly sample depen-
dent. In order to analyze the intrinsic behavior of the mag-
netic susceptibility, this Curie term of impurities should be
subtracted from the raw data first.

To elucidate the intrinsic property of the magnetic suscep-
tibility, we have analyzed the scaling behavior of 	�T� with
the following single-parameter scaling equation:

	�T� = A	f	� T

B	
� + C	. �26�

Figure 8 shows the scaling curves of 	�T� for La214 and
Bi2212. The experimental data were extracted from those
published by Nakano et al.38 for La214 and by Watanabe et
al.23 for Bi2212. The corresponding scaling parameters are
shown in Table VIII. In the scaling analysis for the La214
samples with x=0.20, 0.22, and 0.26, a Curie term C /T is
subtracted from the experimental data; the corresponding
values of C, i.e., C=12.41, 37.23, and 60.23 �in units of
10−7 emu /g�, were obtained by Nakano et al.38

We find that the susceptibility for both La214 and Bi2212
exhibits a good scaling behavior. For Bi2212, 	�T� in heavily
overdoped samples begins to deviate from the scaling curve
near Tc. This is likely to be due to strong superconducting
fluctuations.

Our universal scaling curve is consistent with the scaling
analysis given by Johnston83 and Nakano et al.38 for La214,
and by Allgeier and Schilling85 for Bi2212. The scaling
analysis of Nakano et al. was made based on the scaling
formula defined by Eq. �14�.38 The problem with that kind of
analysis is that the characteristic temperature T* defined in
Eq. �14� has to be determined empirically prior to the scaling
analysis. The characteristic temperature T* for the suscepti-
bility was generally determined from the peak temperature of
	. However, in heavily overdoped samples, no peak structure
has been observed within the whole temperature measured.
This has limited the application of that kind of scaling analy-
sis. In addition, to fully satisfy Eq. �14�, a constant term also
needs to be subtracted for each set of data. This is also dif-

ficult if the measured temperature range is not broad enough.
Nevertheless, we find that their scaling curves, as shown in
Fig. 8, agree well with ours.

The scaling analyses given by Johnston83 and by Allgeier
and Schilling85 are based on the high-temperature series ex-
pansion for a two-dimensional antiferromagnetic Heisenberg
model. The scaling function obtained by Johnston deviates
slightly from the universal scaling curve obtained at high
temperature. The high-temperature scaling curve, as shown
by Johnston83 and by Allgeier and Schilling,85 agrees with
the temperature dependence of the susceptibility of the two-
dimensional antiferromagnetic Heisenberg model without
doping.

In obtaining the scaling function, a temperature indepen-
dent term is subtracted from 	�T�. This term can be ex-
pressed as

	0 = C	 + A		0,s, �27�

where 	0,s is the value of 	0 for the reference sample. The
variation of 	0 with doping may reflect the change of the
density of states at the Fermi level. Thus, it is interesting to
analyze the doping dependence of this term.

FIG. 8. �Color online� The scaling function of the uniform mag-
netic susceptibility 	�T� for La214 �Ref. 38� and Bi2212 �Ref. 23�.
The solid, dashed-dotted, and dashed lines represent the rescaled
scaling curves obtained by Johnston �Ref. 83�, Nakano et al. �Ref.
38�, and Allgeier and Schilling �Ref. 85�, respectively.
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Figure 9 shows the doping dependence of 	0. 	0 increases
monotonically with doping. This temperature independent
term might be the contribution of the core diamagnetism, the
Van Vleck paramagnetism, the Landau diamagnetism, and
the Pauli paramagnetism of the band electrons if the effect of
antiferromagnetic correlations is ignored. The core diamag-
netism and the Van Vleck paramagnetism are doping inde-
pendent. The Landau diamagnetism is generally small. Thus,
the doping dependence of 	0 is mainly affected by the Pauli
susceptibility, which is proportional to the density of states at
the Fermi level. Hence, the change of 	0 with doping will
correspond to the change of the density of states at the Fermi
level. This simple observation is consistent with the result of
Allgeier and Schilling85 as well as the measurement of the
specific heat.4

F. Spin-lattice relaxation rate 1 ÕT1

The nuclear magnetic resonance probes the local spin dy-
namics via the measurement of the Knight shift, the spin-
lattice relaxation rate 1 /T1, and other spin response
functions.86 The Knight shift measures the shift of the reso-
nance frequency induced by the conduction electrons. It is
proportional to the uniform magnetic susceptibility 	�T�. The
temperature dependence of the Knight shift should follow
the scaling law of the uniform susceptibility as discussed in
the previous section. This is, indeed, supported by the experi-
mental measurement �see, for example, Ref. 87�. Below, we
will discuss the scaling behavior of the spin-lattice relaxation
rate 1 /T1.

The high-temperature dependence of 1 /T1T of 63Cu
shows a Curie-Weiss-type behavior.88,89 This can be attrib-
uted to the contribution of antiferromagnetic fluctuations
since 1 /T1T of 63Cu is dominated by spin fluctuations near
Q= �� ,��. It exhibits a broad maximum in an intermediate
temperature regime and then drops at low temperature.

We have analyzed the scaling behavior of the experimen-
tal data of 1 /T1T published by Ishida et al.90 for 63Cu in
Bi2212, by Magishi et al.89 for 63Cu in Tl1212, and by Alloul
et al.1 for 89Y in Y123. The scaling equation is assumed to be

1

T1T
= AT1fT1� T

BT1
� + CT1. �28�

Figure 10 shows the temperature dependence of the scaling
function fT1. The corresponding scaling parameters are given
in Table IX.

Within experimental errors, we find that 1 /T1T shows a
good scaling behavior. For all the materials shown in Fig. 10,
the data of 1 /T1T can be scaled on a common curve in a
relatively wide range of temperature. This, again, suggests

TABLE VIII. The scaling parameters for the magnetic susceptibility 	�T� shown in Fig. 8. The unit of C	

is 10−7 emu /g. Tc of La214 is obtained from Ref. 4 by interpolation. In obtaining the scaling curves, a Curie
term C /T is subtracted from the measurement data for the La214 samples with x=0.20, 0.22, and 0.26. The
corresponding values of C, obtained from Fig. 8 of Ref. 38, are 12.41, 37.23, and 60.23 10−7 emu /g,
respectively.

Sample
Tc

�K�
Doping

�p� A	 B	 C	

La214 0.08 22.3 0.08 1.40 5.97 −1.60

0.10 30.75 0.10 1.41 4.18 −1.57

0.14 36.62 0.14 1.28 2.31 −1.11

0.18 37.45 0.18 1.0 1.0 0.0

0.20 34.62 0.20 1.04 0.68 0.31

0.22 27.81 0.22 1.24 0.53 −0.001

0.26 14.57 0.26 1.38 0.46 −0.027

Bi2212 0.22 82.0 0.13 1.33 3.04 −1.29

0.25 89.57 0.16 1.10 2.22 −0.66

0.26 87.19 0.18 0.66 1.60 0.61

0.27 83.45 0.186 0.72 1.18 0.62

0.28 78.7 0.195 0.51 0.74 1.42

0.30 68.51 0.22 0.66 0.40 1.84

FIG. 9. �Color online� The temperature independent magnetic
susceptibility 	0=C	+A		0,s where 	0,s=1.4�10−7 emu /g for
La214 with x=0.18 as obtained from Nakano et al. �Ref. 38�.
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that the normal-state dynamics is controlled by a single en-
ergy scale. This single-parameter scaling behavior is consis-
tent with the existing theory of spin fluctuations, such as
the antiferromagnetic Fermi liquid theory proposed by Millis
et al.91

IV. ANALYSIS OF THE CHARACTERISTIC
ENERGY SCALE

In the preceding section, we have analyzed the scaling
behaviors of the transport coefficients, including the resistiv-
ity, the Hall effect, and the thermoelectric power, and the
magnetic response functions, including the spin susceptibil-

ity and the spin-lattice relaxation rate, in the normal state of
HTSC. These coefficients probe different aspects of low-
energy excitations and are physically distinct. However, we
find that they all show good scaling behaviors. For most of
the measurement quantities, the temperature dependence of
the corresponding scaling functions are universal, depending
neither on the doping concentration nor on the chemical
structure of the materials measured.

Among the three scaling parameters, the energy scale � or
the relative energy scale B defined in Eq. �7� is the most
important one. It characterizes the basic energy scale govern-
ing the temperature dependence of a response function. For
the c-axis resistivity, we have determined the absolute values
of � using the approximate scaling function of �c derived in
our previous work for multilayer cuprates.9 For other mea-
surement quantities, as the analytic formula of the scaling
functions are unknown, only the ratio of � with respect to a
reference sample, B=� /�s, is determined. Nevertheless, we
find that these characteristic energy parameters determined
from different coefficients show a common trend with dop-
ing. As shown in Tables III–VII, they all decrease with in-
creasing doping.

The similar doping dependence of the characteristic en-
ergy parameters suggests that these relative energy scales
obtained by different probes may have a common physical
origin. This can be examined by rescaling all the relative
energy scales with respect to the absolute energy scale of the
pseudogap � obtained from the scaling analysis of �c. They
should fall onto a single curve if they are, indeed, the
pseudogap energies. To do this, let us introduce the following
formula:

�y�p� = �yBy�p� , �29�

where �y is a scaling factor and �y is the characteristic en-
ergy scale. The subscript y represents the measured physical

FIG. 10. �Color online� The scaling function for 1 /T1T of 63Cu
in Bi2212 and Tl1212, and that of 89Y in Y123. The experimental
data are obtained from Ref. 90 for Bi2212, from Ref. 89 for Tl1212,
and from Ref. 1 for Y123. The notations of the samples are the
same as those in the corresponding references. The Bi2212 OP86 is
taken as the reference sample.

TABLE IX. The fitting parameters, AT1, BT1, and CT1, for the scaling analysis of 1 /T1T shown in Fig. 10.
The unit of CT1 for 63Cu of Bi2212 and Tl1212 is s−1 K−1, and for 89Y of Y123 is 10−4 s−1 K−1.

Sample
Tc

�K�
Doping

�p� AT1 BT1 CT1

Bi2212 63Cu 0.125 79.0 0.13 0.86 1.31 0.72

0.20 86.0 0.16 1.0 1.0 0.0

0.225 77.3 0.20 1.17 0.85 −1.67

Tl1212 63Cu 70.0 2.44 0.72 −4.72

54.0 2.29 0.56 −3.05

10.0 0.48 0.16 16.18

Y123 89Y 1.0 88.8 0.19 0.075 0.88 1.51

1−� 0.069 1.35 1.53

0.85 90.3 0.14 0.085 1.63 1.15

0.75 67.9 0.10 0.087 1.50 0.83

0.63 57.3 0.09 0.088 2.30 0.90

0.53 52.5 0.086 0.097 2.80 0.80

0.48 38.0 0.07 0.070 3.35 0.77

0.41 15.0 0.06 0.028 3.74 0.68
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quantity, i.e., y=�c, �ab, RH, S, 	, and 1 /T1T. The scaling
factors �y can be determined by the least square fit using the
approach introduced in Sec. II.

The fitting parameters of �y are given in Table X. By
substituting them into Eq. �29�, we can obtain the values of
�y. The result, as shown in Fig. 11, indicates that all the
energy scales determined from the scaling analysis given in
Sec. III have the same doping dependence within experimen-
tal errors, which result mainly from the uncertainty in the
determination of doping concentration. It suggests that all the
dynamic coefficients analyzed in Sec. III are, indeed, gov-
erned by the same energy scale. This is a remarkable result
since different coefficients probe different responses of
charge and/or spin degrees of freedom. For example, the
c-axis resistivity �c is susceptive to the charged excitations
around the antinodal points, while the in-plane resistivity �ab
is mainly affected by the scattering of charged quasiparticles
around the node points. The uniform magnetic susceptibility
probes the spin fluctuations around k= �0,0�, while the spin-
lattice relaxation rate is strongly dependent on the antiferro-
magnetic fluctuations around k= �� ,��.

In the underdoped regime, the characteristic energy �
drops almost linearly with doping. This is consistent with the
doping dependence of the pseudogap observed by ARPES,92

tunneling,93 and other measurements.28 Thus, the control en-
ergy scale in this regime is, indeed, the pseudogap. If we
extrapolate the underdoped data of � to zero doping, we find
that � is in order of J, and to higher doping, � vanishes
roughly at p�0.23–0.25.

In the literature, two kinds of pseudogaps �or the onset
temperatures of pseudogap�, which were often quoted as the
“large” and “small” pseudogaps, were reported.7 The large
pseudogap generally refers to the characteristic temperature
T* measured, for example, by the magnetic susceptibility,38

the Hall coefficient.50 The small one could be the energy
scale probed by other experimental techniques, such as the
transport properties measurements33 or the leading-edge shift
around the antinodal direction measured by the ARPES.94

Our scaling analysis indicates that these two energy scales
are, in fact, physically indistinguishable.

In the overdoped regime, the universal scaling behavior
generally breaks down. For overdoped La214, �y determined
from the thermopower and the Hall coefficients separates
into two branches with different energies. �y determined
from the thermopower is higher than that from the Hall ef-
fect. This may imply the existence of two energy scales in
the overdoped regime. However, as the single-parameter
scaling law still holds in this regime for both the ther-
mopower and the Hall coefficients, further investigation on
this issue is desired.

Recently, there is a surge of interest in the discussion of
two-gap energies, namely, the pseudogap in the normal state
and the relatively smaller superconducting gap in the super-
conducting state. The existence of a distinct energy scale in
the superconducting state, whose doping dependence is dif-
ferent from that of the pseudogap, was first reported in the
penetration depth measurements95 and later in the Andreev
reflection measurements.96 This lower energy scale charac-
terizes the low-lying excitations around the gap nodes and
appears only in the superconducting state. Recently,
ARPES,97 Raman scattering,28 and inelastic neutron
measurements98 have further confirmed the existence of
these two distinguished energy scales. Furthermore, the
ARPES has revealed that the two-gap structure is intimately
connected with the arc �or pocket� feature of the Fermi sur-
face of HTSC in the underdoped regime. It is believed that
the superconducting gap develops predominately on the
Fermi arc below Tc. This is consistent with the early ARPES
measurement data.99 However, there exists also other experi-
mental measurements, which suggest that there is only one
energy scale in the superconducting state and the supercon-
ducting gap around the nodal points is nothing but an exten-
sion of the pseudogap in the arc area in the superconducting
state.100 This one energy scale scenario is consistent with the
picture of resonant valence bonds based on the charge-spin
separation101 as well as that of preformed pairs.102

In this work, we have shown that there is only one energy
scale in the normal state. However, as we have only analyzed
the scaling behavior of the experimental data in the normal
state, we are unable to address the issue of two energy gaps
in the superconducting state. It is of great interest to extend

TABLE X. The values of the scaling factor �y for different
probes y=�c ,�ab ,RH ,	 ,1 /T1T, and S of the cuprates.

�c �ab RH S 	 T1T

Bi2212 1 455 125 267

Bi2223 1.04 375

Y123 1.67 465 450 450 182

Ca-Y123 435

La214 405 225a 255a 150

0.46b 315b

La-Bi2201 450 310

Hg1201 385

aReference 49.
bReference 50.

FIG. 11. �Color online� The doping dependence of the energy
scales obtained with Eq. �29�. The values of the scaling factor �y

are listed in Table X. The dashed line is the linear fit to the scaled
pseudogap energies obtained by various experimental probes. Here,
we take the pseudogap energy obtained from the c-axis resistivity of
Bi2212 as a reference, as shown in Fig. 3.
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the single-parameter scaling method introduced in Sec. II to
the superconducting state at which two energy scales �or
control parameters� may exist. This would then allow us to
judge whether there is only one or two energy scales in the
superconducting state from the model-independent scaling
analysis of various transport and thermodynamic coeffi-
cients.

V. SUMMARY

We have introduced a scaling method to study the scaling
behavior in the normal state of HTSC. We have analyzed the
scaling behavior of the c-axis resistivity, the in-plane resis-
tivity, the Hall coefficient, the thermoelectric power, the
magnetic susceptibility, and the nuclear magnetic resonance,
and extracted the corresponding energy scales. It is found
that all these quantities, no matter how different they are,

exhibit universal scaling behaviors, controlled by a single
energy scale in the normal state. Furthermore, we find that all
these energy scales obtained from different physical coeffi-
cients have the same doping dependence as the pseudogap. It
shows that the pseudogap is the only characteristic energy
governing the low-lying excitations in the normal state of
HTSC.

The scaling method we introduced in Sec. II is model
independent. It provides a simple but powerful tool to ana-
lyze the scaling behavior of experimental data. It can be
applied not only to the normal state of HTSC, but also to any
other systems where the single-parameter scaling hypothesis,
i.e., Eq. �3� or �10�, is valid.
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